For the modified theory, the temperature-wave velocity is again described by Eqs. (20) and (21), but in this
case the definitions of @, ¢, and m are as follows:

a=— 6Gg(0, &, Gin 1), (25)
¢c=Dge(® &, @), (26)
m= 8,e(0, B, Gn 1%). @7)
of
In [1], Eqgs. (20)~(24) formed the basis for the conclusion that if
Se(0, ¥, g1 =0 (28)

for all n, the temperature-wave velocity in the direction of g was larger than in the direction —q. Thus, this
velocity is not simply a property of the material but is a function of the process. As follows from Egs. (25)~
(27), this effect is absent from the modified theory and, when only Eq. (28) is satisfied (if, for example, the
material has a center of symmetry), U = U,. The velocity U, may be regarded in the normal sense as a char-
acteristic of the material since calculations of U retaining only the main linear terms give a constant which
depends solely on the temperature.

It should be emphasized that the difference of principle between the two theories are confirmed by experi-
mental verification. :
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HEAT TRANSFER IN SEMIINFINITE REGION WITH
VARIABLE PHYSICAL PARAMETERS

Yu. I. Babenko UDC 536.24.02:517.9
A method is proposed for the determination of the nonsteady temperature field in a semiinfinite
region with variable physical properties.

The heating of a semiinfinite region with variable physical parameters in the coordinate and the time,
for zero initial conditions, may be described by the following equation

[_SF_ a‘j; Ly, t)]T:O, 0<r<oo, 0<t< oo, ¢

Thet =To(®; Tl=w=0; Tl =0.
It is required to find the temperature field T(x, t).

_ Earlier, for an analogous problem, only the temperature gradient at the boundary (6T/6x)x= o was found
i1, 2].

The total solution of Eq. (1) will be sought in the form of a functional series

T=Nc, (61 D2 e~ 2T (1), (2

n=0
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Here DY are fractional-derivative operators, For an arbitrary function f(t} [3]

t
DY) = - ij(t—r)—v;f(r>dr. v,
I(1—w)
D'DYf(t) = D™ f(t), v+u<l, )
DVf* — ___P(P«‘f‘ 1) v
Fp+1-—w)

-xDY/? is given by the expression

D2 f(f) = % ﬂ 1 — (—2—]/—:—)} f(z) dr. “4)
[\ .

The rather unwieldy form in which the operator is given emphasizes its properties

The operator e

_d- D2 Fity = __pi~2 e—-xD”zf(t) = gD 2D f (&
dx

DY e~ 2 f(ty = e—xDVEDY £(f), (5)

DV B f(t) = | =2 F (1] di.
which are verified by means of a Laplace transform with respect to t. The function f(t} is assumed to be
bounded and piecewise smooth: lim f () < const

{10
Eubstltutmg Eq.(2) into Eg. (1), using Eqgs. (4) and (5), and equating terms of the same order in D-n/2.
-xD Ty(t) gives a system of recurrence relations for ¢,

X

b=t == (vin

1 [/ o, mc)
| = —— + C. — n dx.
st 2 5 ( o T e
0

Equation (2) satisfies all the conditions in Eq. (1) if the series converges and may be differentiated term
by ter }n In fact, Eq. (2) gives T = Ty(t) for x = 0 and T = 0 for x = «, Ii is also known that the function T =
To(t) being a solution of Eq. (1) for y = 0, satisfies the zero initial condition for 0 < x <=, For analytic
_ y(x, t), the use in this solution of the operator of Eq. (2) does not change the order of hm T ;i.e., Eq. {2) satis~
fies the zero initial conditions.

(6)

Thus, the series in Eq.(2) is the solution of Eq. (1). _If ¥(x) depends only on x, the solution may be ob-
tained by means of a Laplace transform, since D () = p*(p); e XD‘f/zf(t) = e~xVpi(p),

Example 1. Lety =2(1 + x)™%; Ty(t) is an arbitrary function. Then Eq. (6) gives ¢ = 1; ey = (T 1Bk +
x)7!, n = 1. Summing the Laplace transform of Eq. (2) gives

7 1 X R
Tem (] je—xw T (o).
( 5 Ve 1ox o)

Direct verification confirms this solution.

The confidence that the method is appropriate for any function of the arguments y(x, t) that is every~
where analytic derives from the verification of a number of complex examples, one of which is given below.

Example 2. Let y = x%/4(t* — 1) + t/2. In this case, an accurate solution of Eq. (1) is known

T = e=t/4 [1 —@ (x/2 ‘/ it \f ot dtﬂ ) ("

0



it will be instructive to compare this with the solution obtained by the present method. From Eq. (6)

o xt
og=——(B—1)— —;
j= g B=D—
xG x4t3 x2
= 21 —— (2 — 4y
= Tm 0T i
x° ' x7 ' ®)
Cg=— (5 — 2 - 22— 1) — 785 4 13—
: TITE T = g P10
bl x
i 1124 — 372 + 22) -+ 33 2 (124,
T 3840 T gy ¥ gy B
Since Eqs. (2) and (7) are of completely different form, the comparison made will be (BT/ax)x___o.
From Eq. (7)
, .
oT ! —1/2 £3/2 1772
—_ = {me—t*\ e dt =qn-l2 {12 4 S
o (et e e (s S ) @

Using Eqs. (5) and (8) and calculating the necessary component terms c,,. . . , ¢7, Ed. (2) gives

_ 9T | :D‘/21_2_‘_’£¢_ D2 =
ox ‘x=0 ox =0
n=1
12 t 172 r—4 272 5¢3 £°2
ra/2 4 T@32 T T(5/2) 128 T(7/2)
_/ 21 —_— 1z 21 ) ez —LO(t912)J_ .
2048 64 384 ) 192 o

After grouping terms in increasing powers of t, this expression accurately gives the first three terms of
Eq. (9).

NOTATION

T is the temperature;
Ty is the temperature in boundary region;
X is the coordinate;
t is the time;

is the heat-transfer function;
Cn are the unknown fuhctions;
f is the arbitrary function;
pY is the fractional-differentiation operator;
P is the Laplacian;
D is the probability integral;

v, i, n are the differentiation and summation indices.
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